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We renormalize the driven sine-Gordon model including the relevant A(V4)?/2 nonlinearity of Kar-
dar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)]. We find that on a larger scale a nonzero A is
generated, even if initially A=0, through an “interplay” of the pinning potential and the driving force.
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I. INTRODUCTION

As pointed out by Burton, Cabrera, and Frank [1] crys-
talline facets undergo a roughening transition. Below the
roughening temperature T, the facet has only rare
thermal excitations. Height fluctuations are small and in-
dependent of the facet size. On the other hand, above T
the height fluctuations increase logarithmically with the
linear dimension. The nature of this phase transition was
clarified in the 1970’s through the mapping to the
Coulomb gas [2] and the link to the exactly solved six-
vertex model [3]. These investigations show that the
roughening transition is in the Kosterlitz-Thouless
universality class [4].

When using physically realistic parameters one notices
that even in the rough phase the height fluctuations are
small. Thus experimentally the transition can be ob-
served only by indirect means. One beautiful set of such
experiments has been carried out by Wolf ez al. [5]; see
also [6]. They consider solid “He in contact with the
superfluid phase. The roughening temperature is
Tr=1.28 K. In order to see the transition the superfluid
pressure is increased beyond its equilibrium value.
Thereby the superfluid freezes onto the facet and the heli-
um crystal starts growing with some average velocity v.
The growth mechanism depends sensitively on whether
T <Tg or T>Tg. For T > Ty there are many sites at
which the atoms in the fluid can stick to the crystal and
the velocity depends approximately linearly on the driv-
ing force. On the other hand, for T < Ty first a super-
critical (two-dimensional) droplet has to be formed which
then can grow to cover the whole facet. Thus growth is
mostly layer by layer. For such an activated nucleation
process the resulting growth velocity is exponentially
small in the inverse driving force and hence greatly
suppressed.

In order to analyze an experiment as the one of Wolf
et al. one has to understand the kinetics of a driven inter-
face close to the roughening transition. This is the sub-
ject of our paper. We will first explain a, surely
oversimplified, theoretical model which serves as a con-
venient starting point for further investigations.

One standard approach to interface dynamics is in
terms of an effective solid on solid (SOS) interface model.
We ignore overhangs and assume that the instantaneous
solid-superfluid interface is given through a height func-
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tion h(x), x €Z? taking integer values. In particular,
this implies a simple cubic lattice structure of the crystal
with lattice constant a =1, for simplicity. To each crys-
talline bond we associate a binding energy J. Then, up to
a global constant, the interfacial energy is given by

H=J 3 lh(x)=h(y), M
(x,y)

where we sum only over pairs of nearest neighbors
(x,y). In equilibrium this SOS model undergoes a
roughening transition precisely in the form mentioned
above.

We assume that atoms from the fluid phase may attach
to the surface and that also atoms may desorb from the
crystal. Thus we introduce rates ¢, (c, ) for the height
variable A (x) at x to increase (decrease) by one unit. In
equilibrium the rates must satisfy detailed balance with
respect to the Boltzmann weight with energy (1). In or-
der to drive the interface the absorption processes are
slightly favored as compared to desorption processes.
Thus ¢} (c;) are replaced by c,2=c(1+8)
[e;%=c, (1—8)]. Thereby we lose detailed balance.
The interface now has a nonzero upwards velocity v. We
expect that in the moving frame of reference the interface
acquires a statistically stationary state as t— . The
theoretical problem is then to determine the growth ve-
locity in dependence on the temperature and the bias
(driving force).

In this form our problem looks hopelessly difficult.
The best we can hope to do is to devise a
renormalization-group (RG) scheme which should yield a
decent description at least close to T; and on scales large
compared to the lattice constant. Lattice models such as
(1) are not so well suited for renormalization. We there-
fore follow the standard route and average over small
scales. Thus at time ¢ the interface is given by a function
h(r,t) with rER?, the two-dimensional plane. The lat-
tice structure orthogonal to the facet is relevant and is
kept in the form of an external cosine potential with
period a. We then arrive ai the driven sine-Gordon mod-
el

94 =yAh—27”Vsin

2
77at a h

+F+R . (2)

Let us explain the various terms. 7 is the inverse mobili-
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ty and fixes the time scale. ¥ is the surface stiffness, a is
the lattice constant, and V is the strength of the pinning
potential. F is the constant driving force. Finally, R is
white noise with strength

(R(r,t)R(r',t'))=2D8(r—r')8(t —¢t') . 3)

If the driving force vanishes, then Eq. (2) has a unique
stationary solution, namely, the equilibrium state

’ , (4)

which is known as the static sine-Gordon model. By the
fluctuation dissipation theorem the noise strength D is re-
lated to the temperature T by

D=nT . (5)

%IVh(r)Iz

-1 _1ra
VA exp{ der

—V cos 2—7Th(r)
a

The static sine-Gordon model also undergoes a roughen-
ing transition with the same critical behavior as the
discrete SOS model. For F >0 the solution to Eq. (2) will
move with some average velocity v. Our goal is to deter-
mine v in dependence on the bare parameters of the mod-
el.

This problem was tackled by Nozieres and Gallet [7],
who devised a particular dynamic RG scheme. They
make the obvious choice for the space of “coupling con-
stants” by taking those appearing in (2) and (3). About
the same time Kardar, Parisi, and Zhang (KPZ) [9] ar-
gued that for surface growth a term (A/2)(VA)? in Eq. (2)
is relevant in the sense that it determines the large scale
behavior of the moving interface. Their predictions have
been confirmed for a large variety of growth models [10].
Thus from a systematic point of view we have to enlarge
the space of coupling constants by including A. Of
course, the RG scheme will be only an approximation to
the true RG flow in some infinite-dimensional space.
However, this approximation should include at least all
relevant parameters. In particular we expect that a term
(A/2)(Vh)? will be generated from (2) under renormaliza-
tion.

In a recent Letter Hwa, Kardar, and Paczuski [11] in
fact carried out the program just outlined. In their RG
flow an initial A=0 remains zero (at least to second order
in V). This feature is rather surprising and it certainly
contradicts the findings for the one-dimensional sine-
Gordon chain [12], i.e., (2) with rER. In the one-
dimensional chain the strength of the effective KPZ non-
linearity can be computed in a good approximation and
determines the large scale chain fluctuations. For exam-
ple, starting with a flat profile A (r,t =0)=0, the width of
the chain [{h(r,1)?)—(h(r,1))?]'"? increases as Ar!/3
for large ¢t. Because of this contradiction we decided to
reexamine the whole problem. Our RG flow is given in
Eqgs. (27) where we also discuss in more detail the rela-
tionship with Hwa, Kardar, and Paczuski.

This paper is outlined as follows. In Sec. II we apply
the Nozieres-Gallet RG scheme keeping systematically
the term (A /2)(Vh)2. In Sec. III we discuss the extended
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RG flow. Close to Ty it is iterated numerically. We also
discuss some predictions for the renormalized parameters
and the importance of the (A/2)(Vh)? term.

II. THE NOZIERES-GALLET
RG SCHEME ENLARGED

Our starting point is the driven sine-Gordon equation

dJ 27 . . | 27w
L h=pAp—=T £
nat Y . V sin 2 h

+-)2‘—(Vh)2+F +R  (6)

with the KPZ nonlinearity (A/2)(Vh)? added on. The
microscopic (bare) model is (6) with A=0. Since we ex-
pect the (Vh)? term to be generated on a larger scale, we
already included it in (6) on a provisional basis.

Physically fluctuations on a scale smaller than the lat-
tice spacing a are suppressed because of the crystalline
structure. This is implemented by cutting off the noise
spectrum at A=/a. Thus in momentum space the noise
correlator is

(R(k,t)R(—K',t'))=2Df —‘il— S(k—k')é(t —1t') .
(7
As in [8] we choose a sharp cutoff function

f(x)=6(1—x).

We follow the scheme of [7] and [9] by first integrating
over the momentum shell A(1—dl)<|k|<A. This can
be done only perturbatively in A and ¥ and requires some
work. In the second step we rescale back to the original
A sphere in momentum space, i.e., k—k'=(1+dl)k, or
equivalently r—>r'=(1—dl)r. In order to keep the origi-
nal lattice spacing we impose h—h'=h and thus
t—t'=(1—2dl)t. Therefore the various coefficients are
rescaled as

n—n"=n, y—=>y7' =y, A=>A"=A,
V—V'=(1+2dl)V, F—F'=(1+2dI)F .

(8)

In order to set up the perturbative scheme we rewrite
Eq. (6) in a frame of reference moving with velocity F /7.
Then

n-h=yAh+0(h)+R ©)
with the perturbation
oh)=—ysin |2 |+ Lo | |+ 2wn2 . a0
a n 2

We now split R into R +8R where R contains only mo-
menta |k| <(1—dI)A and 8R those in (1—dDA < |k| < A.
The height profile 4 (r,?) depends on the complete history
of the noise at earlier times ¢’ <t. We define A(r,t) to be
the average of h(r,t) with respect to the short wave-
length components of the noise, i.e., with respect to R,

h(r,t)={h(r,t))sg ,

and denote the remainder by 82 =h —h. h satisfies some
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fairly complicated equation which is nonlocal in (r,?).
We will try to approximate it by an equation of the form
(6) with suitably renormalized coefficients.

On both sides of (9) we average with respect to §R and
obtain

n%}7=7A}7+<T)(lT,8h)+E ,
: (1)
m-28h =y Ak +5B(R,5h)+5R .

Here ®=(®);; and the second equation is simply the
difference between the first one and (9). Since 6A is
infinitesimally small, we have

shr,)=[" dr [d¥yyr—r,t —t')8R(r, "),
8h“’(r,t)=f_t dt'fdzr'xo(r—r’,t—t’)
477?

X ——Vc 0S
a?

Xolp,7)=1/(4myr)exp[ —mp?/(4y7)] is the propagator
of the dynamics of the unperturbed Gaussian surface in
two dimensions. Note that we choose as initial condition
a flat surface at t = — w0, i.e., h(r,— o )=0. The aver-
ages in the definition of ® are given approximately by

([8h (r,)]*) =([8A O r,1)*)
+2(8h'r,t)8h V(1,1)) ,
([V8h(r,1?)=([V8h 1,0 ]*)
+2(V8hV(r,1)-V8h V(1,1)) .

(14)

(3;8h'(r,1)0;8h*(x",1"))

YAt —t)
n

A%exp

where we use 9,/ as convenient shorthand for dh /9r;.

1[Jo(Alr=r')+J5(Alr—r']8; —J

F=—ypgn | 2" |+ E l 2 =5 ((8h)*)sx
a 7'
+—)21(VI7)2+%((V8h)2)53 ,
(12)
s0=— 2T p cos | 22 F+—§t Sh+AVE-V5h .
a

To this order ® depends on 8k(r,t) only through the
averages {(8h)?) and ((V8h)?). We must approximate
them by expressions local in (r,?). In (11) we regard 8P
as a perturbation and expand 8k to first order as
8h=8h"+8nV+ ---. Then

== |h(r, t)+ n ]]8h“”(r’,t’)+le7(r’,t')-V8h‘°)(r’,t’)

(13)

To proceed further we need the following correlation:

(8 O%r, )8R 1", 2"))

2 Y
=L j(Alr—r])exp —M}dl, (15)
2wy n

where J, is the zeroth order Bessel function [8]. By
differentiating with respect to r and r' we obtain the
correlations containing VA,

r)(r —r)

,(Alr— r)
| I ( e

, (16)

At this stage we can already calculate the first order corrections

to ®. The average ([8hr,1)]?) changes the prefactor of the pinning force and therefore renormalizes V.
([V8h'9(r,t)]*) is a constant term which therefore renormalizes the driving force F. We have then

dV‘”=—%([8h‘°’(r,t)]2)=—%Tle ,
a‘y

dF"’———([VSh‘O)(r,t)]z)_ Azdl

17

Adjusting our notation to that of Nozieres and Gallet we redefine U =V /A% and K =F /A2 To first order they satisfy

the flow equations
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dK T
U ——=2K+-—A
di 2K 4y

du _
di

7T

2_.
a’y

with the rescaling (8) already included.

(18)

Let us now take into account the corrections of second order by evaluating (84 ‘©84‘") and (V8h©-V8r'V). Us-

ing (13) we obtain

(8n(r,)6h V(r,0)) =~ Vf _dr’ [d?cos | 2T

+A§f _dt' [ dra (e, (=t —')(8h r, 13,8k

i=1
and

(VA Or,1)- Y8R (r,1))

_ AT &t [
——7V27 igl f_wdt fdrcos

2m
a

+1’—§; f _dr [d*r

iLj=1
=A4,+4,.

The terms denoted by 4, and 4, contribute to the re-
normalization by a term of the form const XAV. If we
consider a translation of the system by half a lattice spac-
ing h—h'=h +a /2, then in the sine-Gordon equation
merely the sign of V changes. Clearly, the RG flow has
to respect this invariance under the transformation
V—V'=—V. In particular, terms of the form
const XAV are ruled out. This argument does not apply
to the equation for Vitself. But in comparison to the first
order term we may neglect the second order term
anyhow. Thus altogether 4, and A4 are dropped.

In order to understand the term A4, we set the periodic
pinning force in Eq. (6) equal to zero, i.e., V=0. We

{h(r t')+

e+ Et']][_"’
7 t

3;h(r', " )xo(r—r',t —1)(3,8h " (r,1)d;8h V' (r',1") )

5
lI)SG:_&T;_KfI dtlfderXO(l'_'rl,t_t')
a —

Xsin

27 lﬁ(r,t)+f—t
n

The product of sine and cosine is split as sinx cosy

=[sin(x +y)-+sin(x

Xolr—1',t —t"){ 8 O(r,)8h V1", 1"))

(r,t))=A,+ 4, (19)

Xolr—r',t —2'){(3,;8h V(r,)60 (1’ 2"))

(20

then obtain the KPZ equation whose RG flow is well
studied [9,13]. For our rescaling scheme, due to the KPZ
nonlinearity we find the following correction:
2
dyXPr=0, dA<"Z=0, ap¥P2=g-2Llp ()
8m 43
In addition we have d**2=0 and dFX*2=0, since these
coeflicients can be absorbed through the transformations
t—t'=t/y and h—h'=h —Ft/q, and dV¥*?=0 of
course.
Finally we consider the term A4 which contributes to
the renormalization through a mode coupling caused by
the pinning force. The contribution of 4, to ® is

== k(") +—

l(Sh(O)(r,t)Sh‘o’(r’,t')> . 2)

—y)]/2. The term sin(x +y) is neglected since

it contributes only to higher harmonics in the pinning potential which become irrelevant under renormalization. This

can be seen from Eq. (18). Inserting the explicit expressions for {8k %(r,1)8

mate Eq. (22) by

203V2T : 1 (r—r')?
— =t Cdl t' d2 ’ _Mr—r 7
yia’ d f-md f T P 4y(t —1t')

XJo(lr—1'|A)sin

h'O(r',t')) and xo(r—r',t —t') we approxi-

Y A —t’)]
n

Br, ) — () + 5(:—:’)” .
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In the next step we split the sine as

sin

== E(r,t)—l?(r’,t')+§(t—t')]]

=sin cos + cos sin

%”[}7«,:)—5(:’,:’)]

-2—7—T-£(z-t')
an

3}[5(:,:)—}7(:',:')]

2—7TE(t—t')]. (23)
a

Nozieres and Gallet provide us with the correct approximations to (23) by terms local in (r,?), namely,

sin 2Tﬂ'[f?(l',t)—ﬁ(r’,t')] =<cos 2777'[i7(1’,t)—l7(r',t’)] >E
27T a ’ '
X = A(r,t)(t—1t' )——aah(r,t)(r —r))r,i—r))+ - |,
a |or I
cos %?[F(r,t)—ﬁ(r’,t’)] l=<cos R, —h(r,t)] ]> 1‘—[3 h(r,0)2(r;— 1)+ ] .

Note that terms like V7 -(r—r’) vanish as we integrate them over d?r’. The average {cos{(27/a)[h(r,t)—h(r',t')]} )K
is easily evaluated, since we only need it to zeroth order in &®. The distribution of A (r,t)—h(r',t’') is then Gaussian and

we find
> R = exp

< (o]

and

2 —
2T R0 = Rt ) ~ 2 (R ~F(r )P

(R0 — R P = ;foAd]f{l Jolklt—r'D)]} exp

— X2t —1) =-L¢>(Ir-—r'l,t—t') . (24)
n Y
Thus (22) is approximated by

_2VL [ ar farr—

—r'|A)exp

2
Bt S TR —t’)—ZZTT<P(|r—r'|J —t')l
¥

v’a 4y(t—t')
X 2_11- _h(r t)(t_t )__aah(r,t)(r ri'(rj—r]f) cOS 2_1r£(t—t’)]
a n
2
+ —%[aiﬁ(r,t)]z(r,-—ri’)z sin |27 E (¢ ] 25)
a a n

We recognize terms proportional to 8k /dt,Ah, and (VA4 )?, which renormalize 71, ¥, and A respectively. Furthermore
there is a constant term which renormalizes F. The latter two terms do not appear in the RG scheme of Nozieres and
Gallet since they restrict their renormalization to 7, ¥, and V. Note that these terms vanish for zero driving force be-
cause of the prefactor sin[27F (¢t —t')/(an)]. The physical meaning of this property will be discussed in Sec. III.

In order to evaluate (25) we transform r—r’ to polar coordinates (p,7). We integrate over d¢ and write the integral
in terms of the dimensionless quantities 5=Ap and x =y(t —t')/(np*). The renormalization due to the sine-Gordon
mode coupling is then

2
dnm SG — U2dl nT f dxf dppJy(p)exp "L—xp -2 ﬂj;tp([o',x) cos 27 Kx |
viat va ’ yg
27t ® o - o Kl
dy SG_y U2dl f fo dpp°Jo(p)expl...] cos Tﬂ_;_‘/& ,
(26)
o0 0 ~2
arso=21 UZdI f & [ “dppoprexpl - Jsin | 21 K;;B ,
473 © © .| 27 Kxp®
dKSG——UZ 0 D. D P Red L
va dl f fo dppJo(p) exp[ Jsin . _&y
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The integrals in (26) depend on T, K, and ¥, more
precisely on the parameters n==T/(ya?) and
k=2mK /(ay) in the arguments of the exponential and
the sine or cosine, respectively. We write 4'"(n;k),
A(n;k), AM(n;k), and A®(n;k) as shorthand for
the four integrals in (26). The complete renormalization-
group flow equations to second order are then

idlg=(2——n)U,
4
%:ﬁ;nA(”(n;K)Ul,
ya
4
%"_;L— 8774 ﬂnA“”(n K)U?,
i ’;“ Y 27)
o WSHA(M(n;K)UZ,
ya
2 4
QZ_LDD}; —814‘£IIA(m(n;K)U2,
dl 87 Y va'v
3
££=2K+ D k*iﬂ-—ﬂlA(K’(n;K)U2 .
di 4171T}/ va

III. PROPERTIES OF THE RG FLOW:
PHYSICAL RESULTS

Our main result can be deduced from the equation for
dA/dl (27). Even if initially A=0, a nonzero A is generat-
ed through the lattice potential for the case of a driven
interface. Once A0, the effective temperature will in-
crease through further renormalization. At some point
7T /(ya®)=n >2, which by (27) implies that U decreases
to zero. Thus on a large scale the effect of the lattice po-
tential vanishes and the moving interface is kinetically
rough with a scaling behavior governed by the KPZ
equation.

We note a few consistency checks. If ¥ =0, then Eqgs.
(27) reduce to the RG flow of the KPZ equation, essen-
tially by construction. If we fix A=0 then Egs. (27) be-
come the RG flow of Nozieres and Gallet. Furthermore,
if initially A=0 and K =0, i.e., zero driving force, these
parameters remain zero under the RG flow because
A™M(2;0)= 4'%(2;0)=0. By (27) also T =D /=const
and in the (U,y,7) subspace there is the line of fixed
points U =0,7T /(ya?)=2, physically corresponding to
the roughening transition. The RG flow for this equilib-
rium transition is discussed in [7].

It is not very profitable to discuss the RG flow (27) in
full generality. Also (27) stops to be valid at very low tem-
peratures. A natural approach is to study the flow close
to the line of fixed points U =0, A=0, and 7T /(ya?)=2
which corresponds to setting n =2 in Egs. (27). Then it is
convenient to define the reduced variables

— 2 . — —
_ 21TZD —4, U=4—7T—\/A _q, k=—q—\/ni , (28)
nay a Y T Y

t 2
where we have set 4 = 4 (r)(2;0). Note that up to a con-
stant prefactor A is the effective coupling constant in [9]
within our fixed point approximation. In these new vari-
ables the RG flow equations become
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dy _ 1 AY(2K) =,
dl 4 4 ’
dn _ A™(2k) 72
di a4 U
v’ _ -, A'7(25k) =2
o o e+ , (29)
AM(2k)—L AT 2;k) _ (A)(9. —
ar _ 2 H4 A2 g2
dl 24 A
ﬂ:—z_ AW)(2;K) 772
i ————A Uu-.

Here we approximate the e(Iluation for dK /dl by setting
dK /dl =2K, i.e., K =K,e¥, and therefore K no longer
appears explicitly in Egs. (29).

In order to iterate (29), which will be done numerically,
we first evaluate the integrals A4 (2;«). These are two-
dimensional integrals. The integrands consist of a prod-
uct of an oscillatory function, cos( pr‘z) or sin(kx ﬁz), and
a smooth function which is concentrated around one
peak approximately at 5=x =1 and decays exponentially
fast outside. 4"’ and 4™ are maximal for k=0 and de-
cay slowly as « increases. When « > 2 the fast oscillations
of cos(kxp®) already lie inside the central peak. The in-
tegrals almost vanish. The properties of 4" are similar,
but 4M(2;0)=0.

In Fig. 1 we sketch a numerical evaluation of the A4
coefficients. If the interface is driven, k increases approx-
imately as e? and the A coefficients vanish on large
scales. Thus the sine-Gordon coupling loses its influence
and the further rescaling is governed by the RG flow of
the KPZ equation. This behavior has a simple physical
interpretation: The moving surface crosses maxima and
minima of the pinning potential. On a time scale
sufficiently coarse such that the crossing of one lattice
spacing cannot be resolved, one will only see the average
pinning force, which is zero.

We have iterated (29) numerically we infer typical
values for the parameters in Egs. (29) as they appear in
the *He experiments of [6] and [14]: The roughening
temperature is Tp=1.28 K =k '2ya’/m, where y

0.5 ——— —
- A(Y)(2’K)
0.4
03]\ |
02 i (; \ \\\ A(M(z )
. N K
f \\\
Y ~
\ \ \\
0.1 \ ~__
| \ Z‘\ \»\
0.0f—— —
AM(2,K) —
0 2 4 6 8 10 12
X

FIG. 1. The integrals in the RG flow equations versus «.
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is the macroscopic surface tension. Tracing back the
critical trajectory we obtain for the bare parame-
ters U3 =exp[wkyTg /(voa?)—2]—4mky Ty /(a’yy)+4.
Thus the initial value of the temperaturelike parameter
t can be fitted to the real temperature by T
=Tg(4+1,)/(4+V2U,). Typical initial values for the
dimensionless parameter k, corresponding to the strength
of the driving force, are k < 10~°,

In Fig. 2 we show the mobility of the interface for
different values of the driving force. For x,=0, u denotes
the coefficient of the linear response of the growth veloci-
ty v to an external driving force F, i.e., u=limg_ (v /F).
We recover the roughening transition. The mobility van-
ishes discontinuously at T =T,. For k>0, p denotes a
somewhat different quantity which for simplicity we call
mobility as well: the change of the growth velocity under
variation of the driving force, dv /dF at F >0. It decays
smoothly as T decreases, in a driven system the roughen-
ing transition is blurred. Note also that for 7— oo the
mobility approaches the value of the free Gaussian sur-
face.

To understand the importance of the KPZ nonlinearity
we iterated the flow (27) with A=0 held fixed. It turns
out that the relative error is of the order 10~ and even
smaller. The point is that on the scale where the sine-
Gordon coupling is wiped out by the moving interface
the effective KPZ nonlinearity is still very small.

To see an effect we would have to go to much larger
scales. Nattermann and Tang [15] give an estimate of the
crossover length £.. If & is the length scale belonging to
the values of A in Fig. 3, then £, =£.exp(87/A%). For dis-
tances less than £, the interface is logarithmically rough
as an equilibrium interface. Only beyond £, the fluctua-
tions are stronger and are governed by the strong cou-
pling fixed point of the KPZ equation which predicts a
roughness exponent {=0.39. These findings agree with
the argument of Balibar and Bouchaud [14], who using
rough estimates obtained from the observed surface
structure claim the minor importance of a KPZ term for

1.0
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0.2

0.0l

1.22 1.24 1.26 1.28 1.30 1.32 1.34
TIK]

FIG. 2. The mobility of the interface for different values of
the driving force. The lowest curve belongs to the undriven sur-
face ko=0. The jump in p corresponds to the roughening tran-
sition. The other two curves show u for the driven SG model:
the lower one for ;=107 and the upper one for x,=1075.
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FIG. 3. The effective KPZ nonlinearity A versus temperature
for kob=10"7 and 1075,

the description of the *He experiments.

We remind the reader that the RG flow (27) is valid
only for small pinning potential (since we expanded in V).
Thus our prediction, namely, a small effective A, can be
valid only in the same range. For a strong pinning poten-
tial there is no systematic theory. In approximation we
expect the following growth mechanism. If A =0 initial-
ly, then there is a certain rate to form a droplet in the
first layer {h =a}. Once formed the droplet will expand
with uniform speed (depending on F). Since droplets are
formed independently, this noise causes second layer
droplets to be already present before the first layer is
completed. After several layers a rough surface morphol-
ogy develops. The nucleation rate and lateral growth
speed can be estimated [16]. An understanding of the
statistical aspects is missing. But it is not unlikely that
the KPZ nonlinear effects are much more pronounced
than those found here. In the same spirit the lattice mod-
el explained in the Introduction could have a large
effective coupling. We are not aware of a Monte Carlo
study of this point, although it is certainly in reach with
current machines.

IV. CONCLUSION

In this paper we treated the dynamic behavior of the
driven sine-Gordon model in 2+1 dimensions. We en-
larged the RG analysis of Nozieres and Gallet to include
terms proportional to (VA)? and thus obtained RG flow
equations to the second order in the strength of the pin-
ning potential and the KPZ nonlinearity. As in Hwa,
Kardar, and Paczuski [11] the presence of a KPZ non-
linearity causes the pinning potential to vanish on large
scales. However, we propose a distinct mechanism: At
microscopic scale the model consists of a Gaussian sur-
face pinned by a cosine potential. Therefore a natural
choice is to take A=0 for the bare model. The pinning
potential and the driving force together generate an
effective A>0 on larger scales. In our interpretation
kinetic roughening is caused by the fact that the surface
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is driven, in contrast to [11] where a A>0 is put in by
hand.

The presence of a KPZ nonlinearity turns out to be
negligible on scales typical for experiments, if we take

systems with weak crystal pinning potential as the inter-
faces between solid “He and its superfluid melt. In these
cases no KPZ-like correction to the theory of Nozieres
and Gallet is required.
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